Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming-Liang Tong, ${ }^{\text {a,b }}$ Ai-Ju Zhou, ${ }^{\text {b }}$ Sheng Hu, ${ }^{\text {b }}$ Xiao-Ming Chen ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\text {c }}$ *
${ }^{\mathrm{a}}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and 'Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.005 \AA$
R factor $=0.029$
$w R$ factor $=0.087$
Data-to-parameter ratio $=11.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[bis(N,N-dimethylformamide)-cobalt(II)]-di- μ-1,5-dicyanamido]

A pair of L-shaped dicyanamide anions link the $\operatorname{bis}(N, N-$ dimethylformamide)cobalt(II) units into a linear chain running along the b axis of the monoclinic crystal of $\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}(\mathrm{DMF})_{2} \mathrm{Co}$. The Co atom and the dicyanamido bridging ligand occupy special positions of symmetry $2 / \mathrm{m}$ and m, respectively. The coordination polyhedron of the Co atom is close to a regular octahedron.

Comment

Owing to its capacity for binding to metal atoms in different modes, the dicyanamide anion, $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$(dca), is an excellent building block for the synthesis of a wide range of metal complexes. Polymeric dicyanamido complexes possess interesting magnetic properties and unusual coordination architectures (Miller \& Manson, 2001). A number of one-, two- and three-dimensional coordination polymers featuring various structural motifs have been reported. One-dimensional [$\left.M(\mathrm{dca})_{2} L\right]$ chains ($L=$ neutral terminal or chelating ligand) (Manson et al., 1999; Vangdal et al., 2002), two-dimensional $\beta-M(\mathrm{dca})_{2}$ sheets and three-dimensional rutile-like $\alpha-M(\mathrm{dca})_{2}$ networks (Miller \& Manson, 2001), along with other motifs (Gao et al., 2002; Shi et al., 2002; Yeung et al., 2002) may be mentioned as a few examples. The recently published structures of benzyltrialkylammonium tris(dicyanamido)metalates, $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NR}_{3}\right]\left[M(\mathrm{dca})_{3}\right]\left(R=n-\mathrm{C}_{4} \mathrm{H}_{9}, M=\mathrm{Mn}, \mathrm{Co} ; R=\mathrm{C}_{2} \mathrm{H}_{5}\right.$, $M=\mathrm{Mn}, \mathrm{Fe}$) (Tong et al., 2003), exhibit a three-dimensional architecture based on a cubic network of $\left[\mathrm{MN}_{6}\right]$ coordination octahedra, following the motif of the α-Po type, and bridged by the dca ligand.

In the title compound, (I), the bis-DMF adduct of $\mathrm{Co}(\mathrm{dca})_{2}$ forms one-dimensional chains in the crystal structure (Fig. 1). The Co atom lies at the $2 c$ Wyckoff position $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of site symmetry $2 / \mathrm{m}$. The dca occupies a special position across the mirror plane (Wyckoff $4 i$). The Co atom has an octahedral environment, formed by four N atoms belonging to four different dca groups [Co1-N1 2.123 (2) Å] and two O atoms of two DMF ligands [Co1-O1 2.096 (2) A]; the DMF ligands, in compliance with symmetry requirements, are trans to each

Received 14 May 2003

Accepted 2 June 2003
Online 10 June 2003

Figure 1
ORTEPII (Johnson, 1976) plot depicting a fragment of the structure. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $1-x$, $1-y, 1-z$; (ii) $1-x, y, 1-z$; (iii) $x, 1-y, z$.]

Figure 2
ORTEP (Johnson, 1976) plot of the hydrogen-bonded layer structure.
other. Adjacent chains are held together by a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, forming layers parallel to the $a b$ plane (Fig. 2; Table 2).

Experimental

Cobalt(II) chloride ($0.12 \mathrm{~g}, 0.5 \mathrm{mmol}$) and sodium dicyanamide $(0.09 \mathrm{~g}, 1.0 \mathrm{mmol})$ were placed in a $10: 1 \mathrm{v} / \mathrm{v}$ methanol/DMF mixture and the solution was heated until the reagents dissolved. Polyhedral crystals separated from the solution in about 80% yield after 10 d .

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=337.22$
Monoclinic, C2/m
$a=13.525$ (4) A
$b=7.383$ (2) \AA
$c=8.094$ (3) \AA
$\beta=112.399(5)^{\circ}$
$V=747.3$ (4) \AA^{3}
$Z=2$

Data collection

Rigaku Mercury CCD
diffractometer
ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
$T_{\text {min }}=0.528, T_{\text {max }}=0.721$
2432 measured reflections

Refinement

Refinement on F^{2}

> 878 independent reflections 847 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$ $\theta_{\max }=27.5^{\circ}$ $h=-17 \rightarrow 12$ $k=-9 \rightarrow 9$ $l=-9 \rightarrow 10$ $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0676 P)^{2}\right.$ $\quad+0.0203 P]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$ $(\Delta / \sigma)_{\max }=0.001$ $\Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3}$ $\Delta \rho_{\min }=-0.36 \mathrm{e} \mathrm{A}^{-3}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.087$
$S=1.06$
878 reflections
76 parameters

All H -atom parameters refined
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Co1-O1	$2.096(2)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.305(2)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.123(2)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.318(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.235(3)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.446(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.147(2)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.455(4)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$91.6(1)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{ii}}$	$88.0(1)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{ii}}$	$88.5(1)$		

Symmetry code: (ii) $1-x, y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\text {iv }}$	$0.94(1)$	$2.53(1)$	$3.464(3)$	$172(3)$
Symmetry				

The diffraction data were of sufficiently high quality to allow for the refinement of the H atoms, subject to bond-length restraints of $\mathrm{C}-\mathrm{H}=0.95(1) \AA$ for the methyl groups, with the $\mathrm{H} \cdots \mathrm{H}$ distance restrained to 1.50 (1) \AA.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Science Foundation of China (20001008 \& 20131020), the Foundation for the Author of National Excellent Doctoral Dissertation of China (200122), the Talent Training Program Foundation of the Higher Education Department of Guangdong Province (Q02017), Sun-Yat Sen University and the University of Malaya for generously supporting this work.

References

Gao, E.-Q., Wang, Z.-M., Liao, C.-S. \& Yan, C.-H. (2002). New J. Chem. 26, 1096-1098.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5139, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Manson, J. L., Arif, A. M. \& Miller, J. S. (1999). J. Mater. Chem. 9, 979-983.

metal-organic papers

Miller, J. S. \& Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.
Rigaku (2002). CrystalClear. Version 1.35. Rigaku Molecular Structure Corporation, Utah, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Q., Cao, R., Li, X., Luo, J., Hong, M. \& Chen, Z. (2002). New J. Chem. 26 1397-1401.

Tong, M.-L., Ru, J., Wu, Y.-M., Chen, X.-M., Chang, H.-C., Mochizuki, K \& Kitagawa, S. (2003). New J. Chem. 27, 779-782.
Vangdal, B., Carranza, J., Lloret, F., Julve, M. \& Sletten, J. (2002). J. Chem. Soc. Dalton Trans. pp. 566-574.
Yeung, W.-F., Gao, S., Wong, W.-T. \& Lau, T.-C. (2002). New J. Chem. 26, 523525.

